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Despite the availability of vaccines, there remains an urgent

need for antiviral drugs with potent activity against SARS-CoV-

2, the cause of COVID-19. Millions of people are immune-

suppressed and may not be able to mount a fully protective

immune response after vaccination. There is also an

increasingly critical need for a drug to cover emerging SARS-

CoV-2 variants, against which existing vaccines may be less

effective. Here, we describe the evolution of molnupiravir

(EIDD-2801, MK-4482), a broad-spectrum antiviral agent

originally designed for the treatment of Alphavirus infections,

into a potential drug for the prevention and treatment of COVID-

19. When the pandemic began, molnupiravir was in pre-clinical

development for the treatment of seasonal influenza. As

COVID-19 spread, the timeline for the development program

was moved forward significantly, and focus shifted to treatment

of coronavirus infections. Real time consultation with regulatory

authorities aided in making the acceleration of the program

possible.
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Introduction
In January of 2020 the WHO declared the outbreak of

coronavirus disease caused by severe acute respiratory

syndrome coronavirus-2 (SARS-CoV-2) a Public Health
www.sciencedirect.com 
Emergency of International Concern, and by March it

was declared a pandemic [1–5]. In January of 2020, we at

the Emory Institute of Drug Development (EIDD) and

Drug Innovation Ventures at Emory (DRIVE), a wholly

owned subsidiary of Emory University, were planning

for a June submission of an Investigational New Drug

application (IND) on a ribonucleoside analog, desig-

nated internally as EIDD-2801 (subsequently given

the generic name molnupiravir), for the treatment of

influenza. Because of the emerging pandemic, our near-

term timelines were moved ahead by 3 months and the

focus shifted to treatment of highly pathogenic corona-

viruses. Both the coronavirus and influenza indications

were supported by extensive work done in cell culture

models of infection and in animal models of influenza,

SARS and MERS and ultimately SARS-CoV-2

[6,7�,8,9��,10��,11,12]. But the discovery and early devel-

opment of molnupiravir actually began in 2013 with a

focus on finding an orally available, direct acting antiviral

agent for the treatment of infection by the encephalitic

New World alphavirus VEEV (Venezuelan equine

encephalitis virus).

The search for a specific countermeasure against VEEV

arose in response to reports that VEEV was weaponized

for delivery as an aerosol during the cold war [13,14].

However, VEEV is only one of three viruses in the genus

Alphavirus (family Togaviridae) endemic to the Americas

that under natural conditions are transmitted by the bite

of an infected mosquito and can cause outbreaks of severe

encephalitic disease in humans [15]. The other two are

Eastern and Western equine encephalitis virus, EEEV

and WEEV respectively. Although most infections in

adult humans are asymptomatic or produce a mild illness

characterized by fever, chills, headache, nausea, vomiting

and myalgia, neuroinvasive disease can occur. EEEV

infection, which is occurring with increasing frequency

in the United States, is the most virulent of the New

World alphaviruses with a mortality rate ranging between

50 and 75% in people developing neurologic disease [16].

Moreover, vector expansion (Culex spp. of mosquitoes)

that is possibly the result of climate change has been

documented and underscores that the threat of EEEV

may continue to expand [17,18]. Clearly the availability of

a direct acting antiviral agent for treating alphavirus

infections is becoming of increasing importance in the

public health sector.
Current Opinion in Virology 2021, 50:17–22

mailto:George.r.painter@emory.edu
https://doi.org/10.1016/j.coviro.2021.06.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.coviro.2021.06.003&domain=pdf
http://www.sciencedirect.com/science/journal/18796257


18 Anti-viral strategies
Identification of a broadly active antiviral
agent for the treatment of RNA viral infections
The pathophysiology of encephalitic alphavirus disease

and the circumstances around the potential use of an

antiviral agent in either a combat or a public health setting

dictated the desired product profile. First and foremost,

the drug candidate needed to show a high level of activity

in cell culture models of infection and in animal models of

alphavirus disease. It was also desirable that, at a mini-

mum, the drug candidate be active against all three

encephalitic alphaviruses. However, a broader spectrum

of activity to address multiple RNA virus threats would be

highly desirable. To treat VEEV, the drug candidate

would have to cross the blood–brain barrier and achieve

adequate concentrations to suppress viral replication in

the brain and arrest progression to encephalitis. The onset

of antiviral activity would need to be rapid since animal

studies have shown that VEEV invades the CNS as early

as 18 hours post aerosol exposure [19,20]. Additionally,

under the adverse conditions that might be encountered

by a soldier exposed to aerosolized VEEV, or in a wide-

spread zoonotic outbreak of VEEV, it is preferable that

the drug be orally available and suitable for self-adminis-

tration. Development of resistance to the drug should be

difficult so that viral breakthrough and loss of activity

does not occur quickly. From a counterterrorism perspec-

tive, it is desirable that genomic changes purposefully

introduced or developed by passaging studies to confer

resistance to the antiviral agent should be difficult to

generate. Finally, the risk/benefit profile of the drug

needs to be acceptable given the severity of the morbidity

and mortality associated with the infection.

While this product profile is derived from consideration of

encephalitic alphavirus disease, it is clearly applicable to

any number of additional RNA viruses. RNA viruses

cause an enormous global health burden and are a major

source of emerging and reemerging infectious disease

[21]. Woolhouse and Brierly have reported a catalogue

of 214 human-infective RNA viruses [22]. In addition,

they suggested that megatrends including climate

change, deforestation and urbanization that are already

impacting society will result in more RNA viruses being

discovered and more RNA viruses with pandemic poten-

tial emerging. Consequently, it has become increasingly

clear that achieving the desired target product profile

outlined here could add a valuable countermeasure not

only against current RNA viral threats but also against

novel RNA viruses that will emerge from the expanding

pool of human viral pathogens.

Based on the desired target product profile and the

general experience with approved products for viral infec-

tions, the decision was made to target the RNA-directed

RNA polymerase (RdRp) encoded by all RNA viruses.

The RdRps are key enzymes in the viral replication cycle

with the dual roles of transcribing mRNA from genome
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templates and acting as a replicase to copy genomic RNA.

There are no known mammalian equivalents and there-

fore in principal the RdRp can be targeted with a high

degree of selectivity. These enzymes are the most con-

served of the RNA virus encoded proteins [23]. Structur-

ally, the RdRps have the canonical ‘right hand’ configu-

ration observed for all polymerases with three conserved

subdomains referred to as fingers, thumb and palm

[24,25]. Within the palm subdomain there is a series of

conserved primary sequence motifs that are critical to

catalysis. Given the overall structural similarity amongst

the RdRps and the conservation of primary, secondary

and tertiary structural elements in the palm and thumb

subdomains where catalytic function is located, there has

been speculation that these enzymes have evolved from a

common ancestor and may be the best target for achieving

broad spectrum activity across a number of RNA families

[23].

We chose to target the RdRp utilizing ribonucleoside

analogs that selectively act as competitive alternative

substrates and upon integration into nascent chain

RNA interrupt viral genomic and/or mRNA synthesis.

Nucleoside analogs acting through this mechanism are

generally regarded as the backbone of modern antiviral

therapy with over thirty approved (either alone or in

combination) for the prophylaxis and treatment of viral

infections [26]. While there have been a number of

excellent reviews on the discovery and development of

nucleoside analogs as antiviral agents [27] a few key

properties that figure heavily into their utility, particularly

in the context of emerging and reemerging RNA viral

diseases and public health emergencies, are worth men-

tioning. The nucleoside analogs are generally quite

potent and tend to have higher barriers to the develop-

ment of resistance than do other classes of direct acting

antiviral agents. Additionally, nucleoside analogs tend to

be orally available or can be modified to be orally bio-

available using prodrug strategies, which allows for self-

administration in emergency settings where the ability to

treat a large number of people quickly may be crucial.

Importantly and in line with the desired target product

profile, the ribonucleoside analog RdRp inhibitors tend to

have activity across multiple families of RNA viruses (see

Ref. [28] for review). Consequently, the development of a

single ribonucleoside analog as a therapeutic agent for

one emerging or reemerging RNA virus may result in a

countermeasure for multiple RNA viruses, which is what

we experienced with molnupiravir and what led to its

rapid development for the treatment of COVID-19.

In 2013 we began screening ribonucleoside analogs for

activity against alphaviruses and quickly identified N4-

hydroxycytidine (identified internally as EIDD-1931) as a

lead with activity against the New World encephalitic

alphaviruses as well as chikungunya virus. Before this

there had been a number of studies demonstrating the
www.sciencedirect.com
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activity and favorable cytotoxicity profile of EIDD-1931

in cell culture models of infection [29–35]. Pharmacoki-

netic and distribution studies in mice, rats, ferrets and

dogs revealed that EIDD-1931 was orally bioavailable,

widely distributed to organs including the lungs and

appeared to be actively transported into the CNS where

it was quickly anabolized to the active 50triphosphate
[7�,8,10��]. Replication of virus in the CNS is important

in the pathophysiology of VEEV infection and must be

addressed to provide protection from mortality in mouse

models of infection [36�]. Broader testing confirmed that

EIDD-1931 inhibits replication of multiple RNA viruses,

and its antiviral activity was verified in animal models

(mice and ferrets) of influenza [8,10��,12], various coro-

naviruses [9��,11], respiratory syncytial virus (RSV) [12],

VEEV) [36�], Chikungunya and Ebola virus infection

(unpublished data). However, EIDD-1931 was quickly

metabolized in the enterocytes of non-human primates

after oral administration. To address this situation a

prodrug of EIDD-1931 (designated EIDD-2801) was

synthesized that facilitated movement across the gut

lining and efficiently delivered EIDD-1931 to the circu-

lating volume of all species tested, including non-human

primates [12]. Consequently, EIDD-2801, molnupiravir,

became the clinical development candidate.

A shift in clinical development plans in
response to a global pandemic
When SARS-CoV-2 emerged as a global health threat in

late 2019, an IND for molnupiravir was being prepared for

the treatment of seasonal influenza. Based on activity in

ferret models of influenza [8,10��,12] and evidence of

robust distribution into and anabolism by lung tissue in

multiple species, this pathway to developing the drug was

agreed upon in consultation with funding agencies that

had supported the discovery and development of EIDD-

2801, the Defense Threat Reduction Agency (DTRA)

and the National Institute for Allergy and Infectious

Disease (NIAID). Development for the prophylaxis

and treatment of aerosolized VEEV was planned to

proceed in parallel under the Animal Efficacy Rule. At

that time, there were in vitro and in vivo data demonstrat-

ing that EIDD-1931/2801 was active against SARS,

MERS and human coronaviruses [9��], and as a conse-

quence EIDD-2801 was also considered as a potential

countermeasure for the prophylaxis and treatment of

highly pathogenic coronavirus infections. In January of

2020 as the crisis worsened, BARDA (the Biomedical

Advanced Research and Development Authority) opened

a portal requesting information on potential countermea-

sures for COVID-19. In response, DRIVE/EIDD submit-

ted a synopsis and gave a presentation to BARDA in early

February. We never received a response from BARDA

regarding the presentation or their assessment of molnu-

piravir as a potential drug. However, we did subsequently

receive a notice from the US Food and Drug Administra-

tion (FDA) in late February of 2020 requesting all
www.sciencedirect.com 
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against pathogenic coronaviruses. We made the decision

to proceed with filing the IND for influenza as planned in

order to facilitate initiating a Phase 1 clinical study to

assess the pharmacokinetic, safety and tolerability profile

of EIDD-2801. The influenza IND was filed on March

25, 2020 by DRIVE.

As the intensity of the pandemic grew it became apparent

to us within DRIVE and the EIDD that additional

resource would be needed to accelerate development.

To that end a licensing deal was concluded with Ridge-

back Therapeutics, a biotechnology company that had

recently completed the development of a therapeutic

agent for the treatment of Ebola infection in March of

2020. The IND for the treatment of Influenza infection

was transferred to Ridgeback Biotherapeutics on April 7,

2020. A second IND for the treatment of pathogenic

coronavirus infections was filed by Ridgeback on April

10, 2020 and a safe-to-proceed letter was received from

the FDA on April 16, 2020. A project team was immedi-

ately formed by Ridgeback Therapeutics that included

DRIVE/EIDD as well as representatives of a CRO. The

project team developed an expedited Phase 1 single

ascending dose (SAD) and food effect (FE) trial design,

which included a placeholder for the later addition of

multiple ascending dose (MAD) cohorts. This approach

greatly facilitated startup of the clinical study.

Because of a positive Ames test, the potential for geno-

toxicity has been thoroughly evaluated for molnupiravir

both in vitro and in vivo. Mutagenicity assays required by

the US FDA to initiate clinical studies (https://www.fda.

gov/regulatory-information/search-fda-guidance-

documents/s2r1-genotoxicity-testing-and-data-

interpretation-pharmaceuticals-intended-human-use)

(developed in collaboration with the Expert Working

Group (safety) of the International Conference on

Harmonization of Technical Requirements for Registra-

tion of Pharmaceuticals) and run under validated proto-

cols provides strong evidence of lack of relevance of the

Ames test for molnupiravir. It is well-recognized that in
vivo studies are needed to establish the biological signifi-

cance and potential clinical risk suggested by the results

of in vitro assays, and that no single in vitro test is adequate

to asses genotoxicity potential [37]. Consequently, two

distinct in vivo rodent mutagenicity assays that are rec-

ognized as robust tools for evaluating mutagenicity, and

for assessing human risk for mutagenicity, the Pig-a

mutagenicity assay and the Big Blue1 (cII Locus) trans-

genic rodent assay [38], were conducted. In both assays,

which were run at doses and durations significantly

greater than those being used in the clinic, the impact

of molnupiravir treatment on mutation rates was not

differentiable from mutation rates observed in untreated

historical control animals. Additionally, molnupiravir was

negative for induction of chromosomal damage in in vitro
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micronucleus (with and without metabolic activation) and

in vivo rat micronucleus assays. Thus, based on the

totality of genotoxicity data molnupiravir is not consid-

ered to pose an increased risk of genotoxicity in clinical

use.

Rapid implementation and conduct of a Phase
1 study
There were immediate challenges in conducting the

Phase 1 study during the pandemic. At the time the study

was initiated there were multiple clinical site closures in

the United States due to the spread of COVID-19 and

uncertainty about the infectivity status of potential nor-

mal healthy volunteers. In order to maximize the likeli-

hood of completing the Phase 1 study without interrup-

tion due to possible COVID-19-related closure of

investigative sites, regulatory submissions were also made

in the U.K. where at the time the impact of COVID-19

was not as pronounced. In the U.S. and in the U.K., the

influenza IND provided the venue for submission of

preliminary data on the activity of molnupiravir/EIDD-

2801 against highly pathogenic coronaviruses. The FDA

expedited the conduct of a Pre-IND Meeting and review

of the coronavirus IND (cross-referencing the influenza

IND). In the U.K., the influenza IND plus coronavirus

activity data were the basis for submission packages in the

U.K. An Expert Working Group for COVID-19 was

established by the U.K. Commission on Human Medi-

cines, and the MHRA (Medicines and Healthcare pro-

ducts Regulatory Agency) published guidance on Clinical

Trial Applications (CTAs) for COVID-19 products, which

specified the procedures to supply rapid scientific advice,

review and approval for potential COVID-19 treatments

(Guidance: Clinical trials applications for Coronavirus

(COVID-19), https://www.gov.uk/guidance/clinical-

trials-applications-for-coronavirus-covid-19). MHRA con-

firmed that the CTA should include all the usual com-

ponents (i.e. Investigator’s Brochure, Study Protocol and

Investigational Medicinal Product Dossier), but that

review of final draft documents would occur on a rolling

basis. Review comments were provided by the MHRA in

real-time, permitting the project team to make requested

changes before formal CTA submission. The MHRA

further advised that Research Ethics Committee

(REC) submission should not proceed in the usual fash-

ion, via the Combined Ways of Working pathway (which

allows consecutive regulatory and ethics review from a

single application), but rather a request for expedited

review should be made through the Health Research

Authority (HRA) Director of Approvals Service. With

regard to the protocol, the MHRA advised that the single

ascending dose (SAD) design should be fully defined in

the initial submission, but that subsequent components

(e.g. multiple ascending dose (MAD) cohorts) could be

referenced as placeholders for tailoring at a later date.

Protocol amendments received similar expedited review

by both the MHRA and the REC.
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Single and multiple doses of molnupiravir were evaluated

in a first-in-human, Phase 1, randomized, double-blind,

placebo-controlled study in healthy volunteers, which

included evaluation of the effect of food on pharmacoki-

netics [39�]. After administration of molnupiravir, EIDD-

1931 appeared rapidly in plasma, with a median time of

maximum observed concentration of 1.00–1.75 hours, and

declined with a geometric half-life of approximately

1 hour, with an apparent slower elimination phase follow-

ing multiple doses or higher single doses (7.1 hours at the

highest dose tested). Mean maximum observed concen-

tration and area under the concentration versus time

curve increased in a dose-proportional manner, and there

was no accumulation following multiple doses. When

administered in a fed state, there was a decrease in the

rate of absorption, but no decrease in overall exposure.

Molnupiravir was well tolerated. Fewer than half of

subjects reported an adverse event, the incidence of

adverse events was higher following administration of

placebo, and 93.3% of adverse events were mild. One

discontinued early due to rash. There were no serious

adverse events and there were no clinically significant

findings in clinical laboratory, vital signs, or electrocardi-

ography. Plasma exposures exceeded expected effica-

cious doses based on scaling from animal models; there-

fore, dose escalations were discontinued before a

maximum tolerated dose was reached. Subsequently,

Phase 2 and then Phase 2/3 studies were initiated as

the accelerated development of molnupiravir continues.

Information regarding these studies can be found on CT.

gov.

Conclusions
The availability of molnupiravir to quickly enter testing

as a potential therapeutic agent for the prophylaxis and

treatment of COVID-19 is the direct result of the long-

standing focus of DRIVE/EIDD on emerging/reemer-

ging infectious diseases and government funding pro-

grams to identify and develop countermeasures for bio-

defense and emerging/reemerging infectious disease that

have been ongoing for over 20 years. It is possible to

receive funding through various federal agencies in the

United States including DTRA, the NIAID and BARDA,

to carry medical countermeasures for category A, B and C

pathogens through clinical evaluation and FDA approval.

Given this level of support, the lack of early focus on the

part of government planning groups on facilitating the

development of direct-acting antiviral agents for use in

blunting the COVID-19 pandemic is puzzling. The target

product profile for molnupiravir, for example, is ideal for

use in long term care facilities where patients owing to age

and/or health status may not be able to mount an effective

immune response after vaccination, and in public health

circumstances where the logistics and timing of vaccina-

tion present critical challenges (such as the current cir-

cumstances in India). It also should be apparent to

planners that there is a significant portion of the global
www.sciencedirect.com
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population that is resistive to vaccination and conse-

quently represents a sustained pool of virus. Antiviral

drugs could be used in this population to help keep viral

burden down in order to minimize transmission and to

help suppress the development of more virulent strains.

The speed with which the clinical program for molnupir-

avir was implemented was due a number of factors: 1) the

favorable characteristics of the molecule to address public

health needs, 2) the thorough nonclinical program that

included extensive testing in models of a number of viral

disease, and 3) the collaboration between the sponsor, a

multinational CRO and regulatory agencies in the United

States and the United Kingdom. The efficient study

conduct was made possible by the work of many individ-

uals and by coordinated collaboration between stake-

holders. Within nine weeks of Phase 1 protocol finaliza-

tion, molnupiravir was ready for Phase 2 testing in

outpatients with COVID-19. Had this study been con-

ducted to standard industry timelines, it would have

taken approximately nine months to generate the data

necessary to enable a Phase 2 study. Indeed, Phase

2 studies have now been completed (clinicaltrials.gov

identifier NCT04405570 and NCT04405739) and Phase

3 studies are starting. This case study demonstrates that

urgent, coordinated efforts to support expedited study

start-up and execution, including collaboration between

sponsor, CRO and regulatory authorities, can greatly

accelerate early clinical development of promising drug

therapies under extraordinary circumstances, such as the

SARS-CoV-2 pandemic.
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